Tolerance of “desi” chickpea to low temperatures at early stages of development
PDF (Español (España))
XML (Español (España))

Keywords

Cicer arietinum
genotipos locales e introducidos
germinación
estrés por frio
cultivos
garbanzo
Bajío
plantas
genotipos
Lerma
plántulas
temperaturas
interacciones
etapas vegetativas Cicer arietinum
local and introduced genotypes
germination
freezing stress
crops
chickpea
Bajio
plants
genotypes
Lerma
seedlings
temperatures
interactions
vegetative stages

How to Cite

Acosta-Gallegos, J. A., Salas-Gómez, L. I., Cisneros-López, H. C., Reyes Fuentes, M., & Rojas-Tovar, L. M. (2020). Tolerance of “desi” chickpea to low temperatures at early stages of development. Nova Scientia, 12(25). https://doi.org/10.21640/ns.v12i25.2536

Abstract

Introduction: In Mexico, chickpea cultivation takes place during the Fall-Winter cycle, and sometimes is damaged by low temperatures. Both, white “kabuli” type and brown chickpeas, “desi” type, are grown in the Bajio region.

Method: Nine “desi” chickpea genotypes were exposed in two trials to low temperatures at two stages of development, germination and vegetative. Four of them were local varieties and five introduced genotypes from ICRISAT, India. In the first trial, the seed of the genotypes was germinated in boxes with sterile sand under two temperatures: 7.0 and 25 o C. The days to emergence were determined and afterwards the seedlings were measured, dried, and weighed. The second test consisted of exposing plants in stage of 7 to 8 compound leaves to a temperature of -4 o C for 60 minutes, with pre and post treatment of 20 min at 4 o C, subsequently they were placed under the sun for two hours; after this protocol, the damage to each individual plant was visually rated.                  

Results: In the first trial, at 25 o C all genotypes germinated in five days (average germination 91.3 %), while at 7.0 o C germination was delayed until 20 days (average germination 80 %) and the percentage decreased differentially among genotypes. ICC 3287, an introduced material, showed the highest average germination under both temperatures 94.9 %, followed by the local cultivar Lerma 89.3 %. The plantlet and root lengths showed significant differences (p < 0.001) between temperature treatments, genotypes, and their interaction; low temperature decreased both characteristics. In contrast, dry weight was similar between temperatures, with significant differences (p < 0.001) among genotypes and for the interaction temperature by genotype. At both temperatures, ICC 1263 showed the highest dry weight followed by cultivar Lerma. In the second trial, ICC 6671 and Lerma show the least damage by low temperature at the vegetative stage.

Conclusion: Three introduced genotypes and a local cultivar showed outstanding traits: ICC 3287 higher germination under both tested temperatures, ICC 1263 higher seedling dry weight at suboptimal temperature; ICC 6671 along with cultivar Lerma were tolerant to freezing temperature stress in the vegetative stage.

https://doi.org/10.21640/ns.v12i25.2536
PDF (Español (España))
XML (Español (España))

References

Acosta-Gallegos, J.A., Mandujano-Bueno, A., Jiménez-Hernández, Y. y Guerrero-Aguilar, B.Z. (2016). Guía para la producción de garbanzo blanco y forrajero en el Bajío de Guanajuato. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro de Investigación Regional Centro, Campo Experimental Bajío. Celaya, Guanajuato, México. Folleto Técnico, Núm. 34, p. 51.

Auld D. I., Bettis B.L., Crock, J.E. and Kephart, K.D. (1988). Planting date and temperature effects on germination, emergence, and seed yield of chickpea. Agronomy Journal, 80, 909-914. DOI: https://doi.org/10.2134/agronj1988.00021962008000060014x

Chapela, M.G. (1982). La producción porcícola en la región de La Piedad. Revista de Geografía Agrícola, 3, 1-10

Chaturvedi, K., Mishra, D.K., Vyas, P. and Mishra, N. (2009). Breeding for Cold Tolerance in Chickpea. Trends in Bioscience, 2(2), 1-6

Croser J.S, Clarke H.J, Siddique K.H.M. and Khan T.N. (2003). Low-temperature stress: Implications for chickpea (Cicer arietinum L.) improvement. Critical Reviews in Plant Sciences, 22(2),185-219. DOI: https:///doi/abs/10.1080/713610855

Clarke H.J., Khan T.N. and Siddique K.H. (2004). Pollen selection for chilling tolerance at hybridization leads to improved chickpea cultivars. Euphytica, 139, 65-74. DOI: https://DOI: 10.1007/s10681-004-2466-y

De Ron, A.M., Rodiño, A.P., Santalla, M., González, A.M., Lema, M.J., Martín, I. and Kigel, J. (2016). Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field. Front. Plant Sci. 7, 1087. DOI: 10.3389/fpls.2016.01087

Farook ,A., Ullah, A., Lee, D-J., Alghamdi, S.S. and Siddiqui, K.H.M. (2018). Desi chickpea genotypes tolerate to drought stress better than kabuli types by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiology & Biochemistry, 126, 47-54. DOI: https://doi: 10.1016/j.plaphy.2018.02.020

Graham, N., Warren, A., Raman, R. and Hobson, K. Chickpea (2019). Yield potential in cool conditions – making the most of early flowers. Proceedings of the 2019 Agronomy Australia Conference, 25 – 29 August 2019. Wagga Wagga, Australia © 2019.

Guerrero-Aguilar B.Z., González-Chavira, M.M., Guevara-Olvera, L., Martínez-Martínez, A.A., Ortega-Murrieta, P.F., Fierros-Leyva, G.A. and Acosta-Gallegos, J.A. (2020). Screening genotypes for collar rot (Sclerotium rolsfii) resistance in central Mexico. Rev. Fitotec. Mex. (submitted).

Habibpour, F., Zeinali, H., Maali Amir, R. and Nazari, M. (2012). Genotypic variability and physio-biochemical characteristics of Iranian black chickpea to cold stress. Romanian Agricultural Research, 29, 121-130

Heidarvand L., Maali Amiri, R., Naghavi, M. R., Farayedi, Y., Sadeghzadeh, B. and Alizadeh, Kh. 2011. Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russian J. Plant Physiol, 58(1), 157-163

Hudák J. and Salaj, J. (1999). The effect of low temperatures on the structure of plant cells (441-464). In: M. Pessarakli (Ed.). Handbook of Plant and Crops Stress New York: Marcel Dekker Inc.

Kaya, M., Kaya, G., Kaya, M.D., Atak, M., Saglam, S., Khawar, K.M., and Ciftci, C.Y. (2008). Interaction between seed size and NaCl on germination and early seedling growth of some Turkish cultivars of chickpea (Cicer arietinum L.). J. Zheijiang Univ. Sci. B, 9(5), 371-377 DOI: https://doi.org/10.1631/jzus.B0720268

Kumar, J., and Rao, B.V. (2001). Registration of ICCV 96029, super early and double podded chickpea germplasm. Crop sci, 41(2), 605. DOI: https://doi.org/10.2135/cropsci2001.412605x

Kazemi-Shahandashti, S.S., Maali-Amiri, R., Zeinali, H., Khazaei, M., Talei, A., and Seyyedeh-Sanaz, R. (2014). Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. J. Plant Physiol, 171, 1106-1116. DOI: https://doi.org/10.1016/j.jplph.2014.03.020

Leyva, X. y Ascencio, G. (1991). Las crisis y los empresarios porcícolas del centro-norte de Michoacán (1940-1989). Nueva Antropología, XI(40), 87-112.

Levitt, J. (1980). Responses of plants to environmental stresses (23–56). In: Kozlowski, T.T. (Ed.). Physiological Ecology. New York: Academic Press

Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergences and vigor. Crop Sci. 2, 176-177. DOI: https://doi.org/102135/cropsci1962.0011183X000200020033x

Malhotra, R.S. (1998). Breeding chickpea for cold tolerance. In: 3rd European Conference on Grain Legumes. Opportunities for High Quality, Healthy and ValueAdded Crops to Meet European Demands. Valladolid, Spain, November 14–19, 1988, pp. 152. Paris: European Association for Grain Legume Research.

McKersie, B.D., and Bowley, S.R. (1997). Active oxygen and freezing tolerance in transgenic plants (203–214). In: Li, P.H. and Chen, T.H.H. (Eds.) Cold resistance of plants, molecular biology, biochemistry, and physiology. New York: Plenum.

Nazari M., Maali Amiri, R., Mehraban, F.H. and Kanheghah, H. Z. (2012). Change in antioxidant responses against oxidative damage in black chickpea following cold acclimatation. Russian J. Plant Physiol, 59(2), 183-189

Samarah N.H., and Abu-Yahya, N. (2008). Effect of maturity stages of winter and spring-sown chickpea (Cicer arietinum L.) on germination and vogour of the harvested seeds. Seed Sci. & Technol, 36, 177-190. DOI: https://doi.org/10.15258/sst.2008.36.1.19

SAS Institute. (2010). SAS Online Doc. Versión 9.2. CD-ROM computer file. Cary, NC. USA.

Singh, K.B., Malhotra, R.S. and Saxena, M.C. (1993). Relationship Between Cold Severity and Yield Loss in Chickpea (Cicer arietinum L.). J. Agron. Crop Sci, 170(2), 121-127. DOI: https://doi.org/10.1111/j.1439-037X.1993.tb01065.x

Viswanathan C. and Zhu J.K. 2002. Molecular genetic analysis of cold regulated gene transcription. Philos. Trans. R. Soc. Lond. 357, 877-886. DOI: https://doi.org/10.1098/rstb.2002.1076

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia